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PART III. THE DISPERSION, UNDER GRAVITY, OF A COLUMN OF
FLUID SUPPORTED ON A RIGID HORIZONTAL PLANE*

By W. G. PENNEY, F.R.S. ano C. K. THORNHILL
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e :
= O The dispersive motion of a fluid column, collapsing under its own weight whilst immersed in a
O lighter fluid, both fluids resting on a rigid horizontal bottom, is idealized as a symmetric problem
=w of incompressible potential flow. The velocity potentials in the two fluids are functions of two

space-variables and time, and satisfy Laplace’s equation in the two space-variables; and the
principal boundary conditions are that, at every point of the fluid interface, the two fluid pressures
are equal, and the two normal fluid velocities are both equal to the normal velocity of the interface
itself. The initial accelerations of the boundary of a column of semicircular cross-section are
derived analytically.

An approximate numerical method of solution for the early stages of such a motion is obtained
by satisfying these boundary conditions at only a finite number of angular positions instead of
everywhere on the fluid interface. Some calculations by this method are shown for certain fluid
columns in vacuo.

Alternatively, by neglecting vertical accelerations in the motion, the problem is reduced to one
of hyperbolic type in one space-variable and time, and this approximation may be solved by the
numerical method of characteristics. Some calculations of this type are also shown, in which
vertical accelerations have been neglected ab initio, and which are therefore appropriate to
initially squat columns.

The hydrodynamical problem of the collapse of a fluid column surrounded by a second lighter
fluid, both resting on a rigid horizontal plane, was suggested by the ‘base surge’ observed at the
Atomic Weapon Trials at Bikini.
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1. INTRODUCTION

/ |\
A B

— An interesting hydrodynamical problem is that of the dispersion under gravity of a fluid
§ — column immersed in a surrounding fluid medium of lower density and resting on a rigid
olm horizontal plane. Examples of such a dispersive motion are afforded by the bursting of
= a dam wall, the sudden shattering of a vessel containing liquid, or the spread of a thin
E 8 pancake mixture in a frying pan. |

— o Another striking example, and the one which inspired the investigation described in this

paper, arises from the fact that a large explosion in shallow water throws a quantity of
water vertically upwards and forms a column consisting of a mixture of fine water droplets
and air. Soon after the explosion, this column starts to collapse under gravitational forces
and, at the same time, spreads out rapidly from the base, producing the phenomenon of
the ‘base surge’ which was observed in the atomic bomb test at Bikini Lagoon. The Bikini
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* A summary of this paper was presented to the International Congress of Mathematicians, Harvard,
1950.
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286 W. G. PENNEY AND C. K. THORNHILL

base surge has been described and illustrated in The effects of atomic weapons (United States
Atomic Energy Commission 1950) and in Bombs at Bikini (W. A. Shurcliff 1947). A photo-
graph of the base surge at Bikini is reproduced in part V by Martin & Moyce. In the case
of an atomic weapon, the base surge accompanying the collapse of the fluid column has
great practical importance, since it is thought to contain most of the deadly fission products.

If the water droplets are sufficiently fine, the early motion of collapse will be similar to
that of a column of a single fluid slightly denser than air, and, to this extent, the results of
the ideal mathematical treatment described in this paper may be applied to the early
motion of the base surge. Ultimately the water drops will begin to sediment downwards
through the air, and will acquire in this way a differential vertical motion through the air.

The problem of the collapsing liquid column in a second liquid may be idealized into
one of incompressible potential flow, neglecting viscosity, ground friction and turbulence,
and is easily shown to be of parabolic type in three independent variables (two space-
variables, since the column has plane or axial symmetry, and time) ; for the velocity poten-
tials, which are functions of all three variables, satisfy Laplace’s equation in the two space-
variables.

The principal boundary conditions are that, at every point of the unknown moving
boundary of the collapsing fluid column, the two fluid pressures must be equal, and the
two normal fluid velocities must both be equal to the normal velocity of the boundary. The
boundary surface is therefore a slip-stream, although of course, when viscous terms are
included, there will be a boundary layer in both fluids. The initial accelerations of the
boundary of a column of semicircular cross-section can be derived analytically, as shown
in §3.

The solution may be developed, in general, in terms of infinite series of cosines (plane
symmetry) or spherical harmonics (axial symmetry), in which the coefficients are functions
of time. A numerical solution for the early stages of the motion may be obtained by limiting
the above series to a finite number of terms. The boundary conditions can then only be
satisfied at a finite number of angular positions, instead of everywhere, on the column
boundary; but, in this way, the solution may be reduced numerically to that of a finite
number of simultaneous linear equations with constant coeflicients at each small interval
of time. The fewer terms retained in the series and thus the fewer points at which the
boundary conditions are satisfied, the shorter is the duration in time before the numerical
solution ceases to satisfy reasonably the principles of conservation of mass and energy.

The numerical solutions given are for fluid columns of initially semicircular cross-section
in vacuo, for which the number of simultaneous equations to be solved is much reduced.
In all cases the column spreads out rapidly from the base, as would be expected.

An approximate solution, appropriate to the later stages of such a dispersive motion, or
to columns which are initially very squat, may be obtained by neglecting vertical accelera-
tions in the fluid motion. In this case the problem reduces to one of hyperbolic type in two
independent variables (one space-variable and time), and a solution is readily obtained by
the numerical method of characteristics. It is shown that, with this approximation, the
dispersive motions of all columns which are similar, except for a scale factor in height, are
derivable from the same characteristic solution, and that differences in the relative densities
of the column and the surrounding medium correspond to different values of gravity.
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PART III. COLLAPSE OF FLUID COLUMNS 287

Numerical examples are given in which vertical accelerations have been neglected
ab initio, and which are therefore appropriate to initially squat columns.

The method of characteristics may be used to continue solutions obtained by other
methods for the collapse of columns which were not originally squat.

2. THE GENERAL PROBLEM

The motion is assumed to start from rest, and is taken as symmetrical about either
a vertical plane or a vertical axis, so that, in either case, polar co-ordinates (r, ) may be
used, with the origin at the centre of the base of the column and § = 0 vertical. The motion
is dependent on the three variables , § and the time ¢; and partial derivatives of functions
with respect to r, 0 or ¢ will be denoted by 9/dr, 3/d0 and 3/d¢. The external boundary of the
fluid column when there is only the one fluid, or the interface between the two fluids where
there are two, may be written r = R(0, ¢).. Partial derivatives with respect to 4 or ¢ at points
on the interface will be denoted by 8/66, §/6¢. Thus Jf,/06 denotes the rate of change with
respect to 0 along the boundary surface, of the function f; in the medium 1 at time ¢. The
suffixes 1, 2 will be used to refer to the denser fluid within the column and the lighter sur-
rounding fluid respectively (see figure 1).

densit
potentia?i gg‘

-

Ficure 1. Collapsing column of fluid 1 surrounded by fluid 2, both resting on rigid
horizontal bottom. The figure shows the notation used in the text.

The effects of compressibility, viscosity, etc., will be neglected. Then, since the motion
starts from rest, and is due only to gravitational forces, it may be described in each fluid by
a potential function ¢ = ¢(r, 8, ¢) defined so that

a1

U=— =
ar’

~rdd

are, respectively, the radial and transverse components of fluid velocity at the point (r, §)
at the time ¢
The equations of motion integrate to give

d
%zg“%qz—grcosﬁ, (1)

where p and p are respectively the pressure and density of the relevant fluid, and ¢ = (u2+492)}
is the fluid velocity.

VoL. 244. A. 37
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288 W. G. PENNEY AND C. K. THORNHILL
The equation of conservation of mass reduces to
Vio(4) =0, (2)

i.e. Laplace’s equation, except that ¢ is not a function of r and 6§ only, but depends also on ¢.

At the fluid interface, two boundary conditions must be satisfied. First, the velocity of
each fluid normal to the interface must be equal to the normal velocity of the interface
itself. After some reduction, this gives the relations

_1_5{5%_%]_313 18R&'¢2 [] )
R2o01 90, Lar), 0t TR0

where, for example, [d¢,/00], denotes the value of d@,/df on the interface r = R(0, t).

Secondly, the pressures in the two fluids must be equal at the interface, and thus

' d
P1 gi:' — 3013 ]r—gpy Rcosd = /’2[ :I —3Ps[q5]r—gpy R cosb. (4)

On the horizontal base-plane, ¢ = %, the motion is entirely horizontal; and similarly,
on the vertical plane or axis of symmetry, § = 0, the motion is entirely vertical; hence the

conditions
09, )

— 1
0 =0 or }m: 0 =30

The conditions of zero velocity at the origin, and no disturbance at infinity, give

r=0: Mo _

ar a0
Wy s ©
r>00:  St= 0, 20 =
Finally, there is an initial condition defining the original fluid interface,
t=0: r=R(4,0), (7)

in addition to the initial condition of rest already assumed.
The solutions of the potential equation (2) which satisfy the conditions (5) and (6) may
be written, in plane symmetry,

¢ = (ga3)? Z on(7/@) " cOs 2n0,
" (8)
¢y = (ga®)t 2 9 (7/@) ~2" cos 2n0,
and in axial symmetry,
#1 = (g°)! 2 Ay, (1]a)*" Py, (cos0),
’ (9)

= (86%)} 3 Byy(r/a) 2 Py, (cos ),

where the coefficients 4,,, B,, are non-dimensional functions of ¢ only and « is some repre-
sentative length, say the initial radius of the base of the column.
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PART III. COLLAPSE OF FLUID COLUMNS 289

We come now to consider the form of the Fourier expansion of the radius vector R(0, f)
in terms of . One naturally uses the same set of orthogonal functions as was used in the
expansion of the velocity potentials, and expands R(0, f) in the range 0<<0<<{w as follows:

= % S, c0s 210,
n=0
. (10)
= 2 S5, Po,(cos0),

n=0

m’;u Qlk

for the two cases of plane and axial symmetry respectlvely The coefficients S,, are non-
dimensional functions of ¢ only.

The normal procedure would be to substitute (8) [or (9)] and (10) in (3) and (4) and
attempt to manipulate all the trigonometric functionssothat the only trigonometricfunctions
finally appearing are those of the orthogonal sets which are being used as the bases, namely,
cos2nf or P,,(cosd). By collecting together all the terms in each particular cos2nf or
P,,(cosf), the equations (3) and (4) yield three infinities of equations. These equations
would, in principle, be solved successively, beginning with the gravest harmonic and
moving to each higher harmonic in turn. Ifsuch a procedure were in fact possible, we would
hope to have established a convergent process, and to obtain a reasonable approximation
to the motion with the first few terms. Unfortunately, however, this procedure is too
complicated to give satisfactory results. The high powers of R which appear in the
velocity potentials give rise to very high order equations in the S coefficients, when
the expansions (8) or (9) are used in (3) and (4). An alternative procedure was therefore
developed.

In numerical work, of course, one can only take a few terms in the expansion. Any finife
number of terms in the expansion (10) imposes the result that

F poir (11)

and therefore that the interface of the two fluids is always perpendicular at the ground.
Later in the paper we shall give a demonstration that the interface at large times meets the
ground at an angle 7. Presumably, therefore, as soon as the motion starts (i.e. £>0), the
interface at the ground must depart from the vertical. Indeed, if we wish, we can start with
a liquid column which does not meet the ground vertically. The expansions (10) could
still be made, but would be formally acceptable only in the limit of infinite expansions.
Any approximate numerical solution, using a finite number of harmonics in (10), would
involve the approximation that the angle of contact at the ground is 7, but one would
expect that the representation found for the motion, apart from this blemish, would improve
with the number of terms taken in the expansion.

We shall later describe howwe have solved (3) and (4) by approximatenumerical methods,
using a finite number of terms of the expansions (8), (9) and (10). Relying on the intuitive
hypothesis that the lower harmonics in ¢ are the most important, we have, for this purpose,
used the actual expansions (10), stopping at n =3 or n = 4, thus making the angle of
contact with the ground always equal to 4.

37-2
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290 W. G. PENNEY AND C. K. THORNHILL

It was later realized that, in so far as our methods do not use the orthogonality properties
of the harmonics, we could have used expansions such as

N

Tcosné’
(10q)

T, P, (cost),

SRR &Ibu
1M~ ﬁM~

or any other convenient form of expansion, such as a polynomial in #, which would not
impose the condition of an angle of contact 7 with the ground. Calculations based on such
finite expansions are now proceeding, and if the results are of additional interest they will
be published in a later paper. ' -

We have actually made three separate attacks on solving the motion. The first deals only
with the initial accelerations. It was found possible in this case to retain infinite expansions
for ¢ and R, and to get the complete solution, including the singularity at § = {7. Details
follow later (§3). The third method uses rectangular co-ordinates and equates the vertical
acceleration everywhere to zero. In this case, a complete solution is also obtained. This
solution, of course, can only be applied to the motion of columns whose vertical height is
small compared with their horizontal dimensions. Details are given later (§5). The second
method of solution is perhaps the most interesting and will be outlined now, although the
mathematical details are given later (§4).

The essential problem is to solve by some arithmetical method of approximation the
two equations (3) and (4). We have already reached the conclusion that a complete solution
is impossible, and our more limited objective now is to approximate to ¢ with the few lowest
harmonics. Because we have only a few harmonics, equations (3) and (4) cannot be satisfied
exactly. We therefore argued as follows. Let us attempt to satisfy these two equations at
a limited number of values of 0, rather than over the whole range, i.e. divide up the range
0<f<iminto (N—1) parts, and attempt to satisfy (3) and (4) at

0,=0, 0,=3in/(N—1), ..., Oy ,=1m

Thus, the pressure will be continuous from one fluid to the other only at N values of 4, and
the boundary surfaces of the two fluids will intersect only at these same N values. In the
special case when there is no second fluid surrounding the column, the pressure will be zero
at the boundary only for these N values of #, and an artificial pressure distribution is thus
introduced over the ‘free’ surface, having nodes at these N angular values. We regard the

unknowns as . .
Ry, Ry, ..oy Roy_os Aoy Aoy ooy Agy_95 By Bygy ooy Byy .

The number of unknowns is therefore 3N and we have exactly 3N equations from (3)
and (4) by particularizing the values of / to 0, ..., 0y._,. At each stage of the motion, we have
calculated the N values R, R,, ..., Ryy_,. To these values we fit a curve in even harmonics
of the form of the first N terms of the expansion (10). Knowing all the values at one time,
we proceed to the next step in time, using in our equations the particular values of [§R/d(]
obtained from the curve fitting to R.

We have not, in fact, so far attempted a two-fluid problem, but we have carried through
the process described above for the case of a single fluid iz vacuo. The number of simultaneous
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PART III. COLLAPSE OF FLUID COLUMNS 291

equations to be solved in each step is 2V for the case of a single fluid, and we have used
N = 4 and N = 5 in special examples.

Non-dimensional variables. In order to simplify the algebra, we use non-dimensional
variables. The first group of problems we shall consider relate to the collapse of fluid columns
initially of hemi-cylindrical shape, resting on the diametral section; or of hemispherical
shape resting on the diametral section. Let a be the initial radius in either case. Then we
introduce the non-dimensional variables

® = ¢/(ga®)},
T = l(g/a)},

E{: r/a> (12)
A = R|a,
and we write €= (p/py) — 1. (13)

These variables are used in the following two sections.

3. THE INITIAL ACCELERATIONS

This section is concerned with the initial accelerations throughout the two fluids for
columns initially of hemi-cylindrical or hemispherical shape, released from rest.
In virtue of the initial rest condition, we may write for small values of 7
Ay = ay o F+ay T+a, o221+,
By = by o+by ,74by 572214 ...,
Ay, = ag, 1T+ ay, 72! (n>0),
By, = by, 1 THby, 57214, (n>0),

(14)

whilst, by virtue of the initial condition 7 = 0, #Z = 1, and the initial rest condition, we may
write So =1,

Substituting these values in the relations (3), differentiating with respect to 7, and setting
7 = 0, we obtain, in the case of plane symmetry,

(15)

—2na,, | = Sy, 5 = 2nb,, | (n>0), (16)

whilst substituting in the relation (4) gives
;::0 (P19, 1= P304y, 1) €OS 210 = (py—py) cos . (17)
Using (13) to eliminate the densities, we get
(1+€)ag, 1—by 1+ (2+¢) ﬁla% 1cos 2nf = ecosd. (18)
Expand cosd in the range (0, $7), as a series in cos 2n, to give
0 2( . l)n—l

2
cosﬁ=;[1+ >

2 A=) cosQnﬁ:I. (19)
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292 W. G. PENNEY AND C. K. THORNHILL
Then, for n>0, Qgp,1 = (—1)"" 14(216) (‘blél 1)’ (20)
(€ 2n
Son,2 = (—1) ;(m)m, (21)
and the initial radial acceleration of the interface is
4g( ¢ 2n
(2+€) 5 (= 1)1 gy cos 2. (22)

The series (22) is convergent for 0<<0 <4, and has the sum

2
g(2i>[l+smﬂlogetan( —10)].

The series is divergent at = 1.
Thus, for sufficiently small values of 7, the equation of the interface in dimensional form

is approximately

R_a__g_t(2i )[1+smﬁlogetan(4ﬂ——0)] (23)

In the particular case of a fluid column i vacuo, ¢ 00 and (23) reduces to
2 : :
R=a—4-[1 4sinf log, tan ({n—10)]. (234)

The infinite initial acceleration at § = 37 1mphes that the foot of the column shoots out
horizontally, but we are unable to say whether a jet is formed. Our equations fail at § = 7
because we have assumed that the displacement is small, and consequently that the normal
velocity of the interface is the same as the radial velocity of the fluid. This condition holds
everywhere except at § = .

In the case of axial symmetry, the relations (16) and (18) become, respectively,

—2MAy, | = Sg, 5 = (2n+1) by, 1 (n>0), (16)
1 2 1 '
(14+6) ag,1—bo,1+ 3 {<4”+ ;;L(l”JF )¢ }aZn’len(cosﬂ) — ¢cosd. (18")

Now cos § may be expanded in the range (0, §7), as a series in P,,(cos{), to give

(4n+1) (2n—3)!

cosﬁ:%—}—él(—-l)n 122n_ i 1)! (1—2)]1 i Py, (cos ). (19')

1f @n1) (4n+1)e)  (22—3)! ,

Then, >0, a3, = (—1) {(4n+l)+(2n+ 1)6}22n—1(n+1)! (ni—2)l (207
(2n+1) (4n+1)¢€ 2n! p

Sonz = (—1)” {(4n—|—l)—|—(§n—l—l) }22"(272—1) CESICESE (21)

and, for sufficiently small values of 7, the equation of the interface in dimensional form is

approximately
_ (2n+1) (4n+1)¢ (2n)!
R = a——‘z‘gl‘ ngl (—'1) {(4”—1— 1)+(2ﬂ+1) 6} 2211(2”__1) (n+1)! (n__l)!P2n(COSH), (23’)

or R = a—}gt?2(c,0).
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PART III. COLLAPSE OF FLUID COLUMNS 293

For small values of ¢, that is, when the fluid column is only slightly denser than the sur-
rounding medium,

I (2n+1)!
Z(e, 0) = engl( 1) 7 (2n—1) (a1 1! (n_l)!PZn(cosﬁ)
=6Xo(0) (say) (24)
approximately ; and, for a fluid column #z vacuo, or in a much less dense surrounding medium,
¢—>00 and
o2 (4n+1) (2n)!
2(e,0) = ,El (—=1) 220(2n—1) (n+1)! (n—1) !PZ”(COS 0)
=3.(6) (say). (25)

The series 2, (f) and X, (f) are again found to be convergent for 0<<§ < {7 but divergent for
0 = im, and have been summed by the method indicated below.

Laplace’s first integral for P,(cosf) gives (see, for example, Whittaker & Watson 1927,
chap. xv), C i
P (cost) =~ f 1(1—2h cos 0+ h?)~+ dh.

TJ e-if

Hence, if suitable conditions are satisfied,

3, (0) = f S (h2) (1—2hcos 0-+H2)~ dh

and - z. (0) —_-71, T (%) (1—2hcos 0+ 1) dh,
where X (%), X, (h?) are the corresponding power series in /2. It is not difficult to show that,
for l/l|<1, s (h2)_._g_._2h2+1+2/h2
0 8k 3(1+A%)E (26)
, 2 R241+2/k2
and Zw (/Z ) }lz W N
. I I
and then ultimately 2 (0) =%cosf— —l—
61, 2] (27)
2 (0) =2cos— +
0 cos?gdg ‘
where [cos P(cos g—cos ) ¥’ 08
s (25)

0 [cos P(cosg—cos )]

The integral I, may be shown to involve elliptic integrals of the third kind, and has been
computed numerically for the present purpose. The integral I, is an elliptic integral of the
first kind and is tabulated. As -0, I; and I, both tend to 7//2.

Table 1 gives the calculated initial radial accelerations both for the plane and axially
symmetric cases, and for small and large values of ¢. In figure 2, curve 1 shows the boundary
of the plane symmetric column iz vacuo as given by equation (23a) at ¢ = 0-5605(a/g)?,
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294 W. G. PENNEY AND C. K. THORNHILL

when the height has fallen by 10 9, ; and curve 2 shows the boundary of the axially symmetric
column u vacuo as given by equation (23’) with ¢—>00, at £ = 0-4627(a/g)?, when again the
height has fallen by 10 9.

TABLE 1. INITIAL RADIAL ACCELERATIONS IN UNITS OF g

plane symmetry  plane symmetry  axial symmetry axial symmetry
small € €—00 small € €00
0° —0-318¢ —0-637 —0-512¢ —0-828
30° —0-231e —0-462 —0-405¢ —0-665
60° +0-045¢ +0-089 —0-084¢ —0-164
85° +0-675¢ +1-349 +0-583¢ +0-995
87° +0-840¢ +1-679 +0-749¢ +1-312
88° +0-969¢ +1-939 +0-880¢ +1-563

A A

OF

A

Ficure 2. The shape of the plane symmetric column iz vacuo when the height has fallen by 10 9%,
(curve 1), and the shape of the axially symmetric column iz vacuo when the height has fallen by
10 % (curve 2). The curves have been drawn assuming that the acceleration of each point on
the surface has remained at its initial value.

4. APPROXIMATE NUMERICAL SOLUTION FOR THE INITIAL MOTION

SOCIETY

The general solution has been reduced in § 2 to that of three ordinary first-order differ-
ential equations which must be satisfied by the functions 4,,(¢), B,,(¢), S,,(¢) at all radial
positions from 6 = 0 to § = }n. These three equations may be considered as the limit as
N->o0 of the corresponding finite system of 3N equations in which the series (8), (9)
and (10) terminate at n= N—1, and the boundary conditions (3) and (4) are
satisfied only for N arbitrary values of the angular variable ¢ instead of for all values from
zero to 4.

OF
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PART III. COLLAPSE OF FLUID COLUMNS 295

We have already explained in § 2 that if the radius vector to the interface R is expanded
in terms of only the even harmonics, then for any finite expansion, the interface must meet
the ground vertically. On the other hand, it is not necessary in the numerical work to
expand R only in even harmonics, and then the interface will not in general be vertical at
the point where it meets the ground. Arguments can in fact be advanced to show that the
interface must ultimately make an angle of {7 with the ground. We are indebted to Professor
Harold Jeffreys for demonstrating this result and for permission to quote his argument.
A similar proof has already been given independently by von Karman (1940) in connexion
with ‘gravity currents’. Both Jeffreys’s and Karman’s proofs are reminiscent of Stokes’s
proof (1880) that the crest of the highest progressive finite plane gravity wave of permanent
form on deep water is a cusp of semi-angle 3m. Professor Jeffreys’s proof is as follows.

p=0

Ficure 3. Steady-state motion at the base of the column. The point at which the column
touches the bottom is kept at rest by a mass motion of the whole system.

Superpose a uniform velocity on the whole system in order to bring one point of contact
between the fluid interface and the base-plane to rest, and assume that steady conditions
exist near this point. If the angle of contact « (figure 3) is independent of ¢, the fluid interface
is then a stream surface, and there are two irrotational motions in angles «, (7 —a). If polar
co-ordinates (7,9) (¢ = 0 horizontal) are taken about this point of contact as origin, and

¢, = Ar™ cosm, +terms containing higher powers of 7,

@, = Br™cosm,y +terms containing higher powers of 7,

near the origin, then ¢ is of order 7™~! or -1 respectively. From equation (4)

pr(3gi+grsing) = py(q+grsiny) (29)

along the fluid interface ¢ = «, and the other boundary conditions are

r=0: st—2‘~-0,

W
. 08y _ 09,
¢'=“. b—jz‘a%:(),
y=m: ‘%zo.

It follows that, if the densities are different, the only solution compatible with these con-
ditions, in which the lowest powers of 7 in (29) can balance, is given (apart from the cases
a = 0,m) by 2(my—1) =1 (my>my).

Vor. 244. A. 38
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This leads to m; = 3, my, =% and a = 120°; and since both d¢,/dt and d¢,/d¢ are then of
higher order than unity in 7, steady motion as a local approximation appears to be justified.

Substituting ¢, = 4r®cos 3y, ¢, = Bricos (3¢¥) in (29) gives

B? = 4g(p;—p,)[3 /3 ps
and thus B is only real if p, > p,. It follows that there is just one possible solution, in which
the denser fluid is contained within the 60° angle of contact.

We give now an example of our numerical method of solution of equations (3) and (4)
in the case of axial symmetry. In this case, using the non-dimensional variables defined by
(12), we have that O, = 4,6P,(cos0),

@O, = B;{~"1P,(cos b)), (30)
R = S;Py(cos0),
summed for ¢ = 0,2,4, ..., (2N —2), must satisfy the boundary conditions (3) and (4) at

9, (j=0,2,4,...,(2N—2)). Let %, stand for the value of # along 0 = 0,; and let us, for
brevity in printing, use P; for the Legendre polynomial P,(cos¢;). Similarly, let P} denote

the value of Pi(cos§;) = —[(d]d8) P,(cos 6) Iy,

Also, define functions ¢,; such that S; = X, Qs (31)

i.e. since R; = S;P;, (32)
P, @y = 0y, (33)

where J;; is the Kronecker delta. In the last three equations, and henceforward, the sum-
mation convention is used with respect to all repeated indices except the current index ;.
Then, substituting these expressions in the boundary conditions (3) and (4), the following
system of 3N equations in the 3N variables 4;, B;, %, is obtained:

R, Qu PLARE2PL, —id, R Py = dAR,|dr
| = R Qul) By A * 2 Ply+ (14-1) BA; 2Py, (34)

(1-+e¢) (d4;/dr) R} Py —§(1+e¢) [(14; R Py) 2+ (A, K71 PL)?] — e cos 0;
= (dBy/dr) ;"' Py —4[(i+1) B,Z; 2 P;]* —3(B %' P})*  (85)
for 4,7,k 0 =0,2,4, ..., (2N—2). As before, ¢ stands for (p; —p,)/p,-

The numerical solution of this system of 3NV equations in general necessitates the simul-
taneous solution of 2N equations with constant coefficients at each small interval of time.
But, in the particular case of a fluid column iz vacuo, or approximately, when the density of
the fluid column is large compared with that of the surrounding medium, e-—>c0, and the
system reduces to the 2N equations

dR;|dr = R, QP A, RE~2 Pl —i A, R Py, (36)
and R} Py dA;Jdr = L[ (A, B Py) 2 - (A; R PL)? + R, cos b, (87)
of which the numerical solution necessitates the simultaneous solution of no more than N
equations with constant coefficients at each small interval of time.

In the case of plane symmetry, similar finite systems of equations are obtained involving

cosill;, sinif; instead of 7, P}.
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PART III. COLLAPSE OF FLUID COLUMNS 297

As a particular example, the full system of eight equations may be quoted for the plane
symmetric case of an initially hemi-cylindrical column resting on its diametral plane, when
N = 4 and the interface conditions are satisfied at 0; = %7 (j = 0, 2,4, 6). These are

dd—‘%’o — 94, Ty — 44, T — 6 A, TE, |
%4 A, 5 A, 2 B3, LR
71;‘2”‘ 2%27‘“2 4‘%2+6A6'%2+(A2+2 4@2) (3%0”‘ 2*‘3 4+ 6)>
iR v ' ’ (38)
71;‘*: Ay Ry 424, T — 6 A T+ (Ay— 24, 983) (— Ry + 3Ry + R, — 3Ry),
d‘—%: 24, Rs— 4A, R+ 6 A A3, )
and '
dA dA dA dA,
@ TRy R Ay
= QAT+ BAZ R+ 18 AL RN+ 84, A, TE+ 244, Ay RS+ 124, Ay TS+ R,
ddy | 1 4y | o dA,  cdAg
AR b mat S e e 1
= QAL R+ 8AT TG+ 18 AR R + 44, A, TS+ 124, Ay s — 6 A5 Ay T+ /3,2, (39)
ddy | nd4y | ,d4, dA,
R X A S R
= QAL+ ARG+ 18 A2 RN — 4 A, A Tt — 124, A RS — 6 A A, TS+ 1R,
ddy  _,d4,  _,dA, . dA
dr K g dr +%s dr gﬁ? ,
= QAL T2+ 8AI RS+ 18 AR R — 8 A, A Ts— 244, Ay TE+ 124, A, TS,

In order to illustrate the effect of using the expansions (104) instead of (10) we also give
the corresponding equations using (10a). The equations (39) are not altered, but instead
of (38) we have the following set: .

i,
dr

@By A, By 24, T+ 64y T

dr
+(Ay+-24,923) (40982, — 3:0982,— 1-098%,+ 0-098%;),

= — 24, — 44, T — 6 A T,

- (384)
@Ry [ By+24, T — 64, T

dr
— (A, —24,%3) (4-098%,— 8830, +4-098%, + 0-634%%;),

Do 24,9514, M)+ 64,2

P

Numerical solutions both in plane and axial symmetry and for different values of N are
given in the following paragraphs.
38-2
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PART III. COLLAPSE OF FLUID COLUMNS 299

Various numerical examples. Figure 4 shows the approximate initial motion for a plane
symmetric column of initially semicircular cross-section ¢ vacuo, as calculated from the
equations (38) and (39), i.e. for N = 4 and satisfying the interface conditions at 0; = {57
(j=0,2,4,6).

Figure 5 shows the corresponding solution in which N = 5, and the interface conditions
are satisfied at 0; = {57 (j = 0,2,4, 6,8). A comparison with figure 4 shows the influence
of the choice of N and the angles #; on the numerical solution at these small values of V.
The general shape of the columns at corresponding times and the general nature of the
motion is the same in both cases. Detailed differences due to the choice of N and 6, are
clearly seen. .

One would expect from physical arguments that the mean of the solutions with N = 4
and N = 5 would be a better approximation than either. By taking the average, the detailed
oscillatory differences due to the choice of N and 0, do very nearly balance out, and a smooth
column boundary without extraneous oscillations is left (cf. figure 13).

The duration in time for which the above solutions have any practical significance may
be assessed by the extent to which they satisfy the principles of conservation of mass and
energy. The ratios of the computed mass and energy at any stage expressed in terms of their
original values are given for these solutions in table 2.

TABLE 2

(Plane symmetry; £ expanded in even cosines)

T 0 0-2 0-4 0-6 0-8 1-0
N=4 (figure 4) mass factor 1 1-001 1-005 1-022 1-054 1-059
N=4 (figure 4) energy factor 1 1-006 1-012 1-039 1-111 1-204
N=5 (figure 5 mass factor 1 1-000 1-003 1-017 1-031 —

Figure 6 shows the corresponding solution in axial symmetry for a column, initially
hemispherical, in vacuo, in which N = 4 and the interface conditions are satisfied at §; = 4% jm
(j=0,2,4,6). As compared with the plane symmetric solution of figure 4, the axially
symmetric column spreads out more slowly over the base-plane, but loses height more
rapidly, as would be expected. The axially symmetric solution also diverges more rapidly
in time from the principles of conservation of mass and energy than the corresponding plane
solution of figure 4. For comparison with table 2, the mass factors for the axially symmetric
solution are given in table 3.

TABLE 3
(Axial symmetry; Z expanded in even harmonics)

T 0 02 0-4 0-6 0-7
N =4 (figure 6) mass factor 1 1-001 1:011 1.057 1-111

For any of these numerical solutions it is possible to calculate the pressure distribution
at any time by means of equation (1). It is of particular interest to compare the initial
pressure distribution calculated in this way with the known initial pressure distribution on
the column boundary. For example, in the case of a fluid column iz vacuo, the supporting
pressure at the boundary point (R, 8), just before the fluid is released, must be pg(2—R cos ),
and the pressure on the horizontal supporting plane is pgh, where % is the maximum height
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oo o)
~I S 3

. 7=0,02,04 06 07
Ficure 6. Collapse of the axially symmetric column iz vacuo, initially hemispherical at rest; N = 4.

0-477 0-45  0-40 0-35 030! 0201010
025 015

Ficure 7. The initial distribution of pressure in the fluid column shown

in figure 4. The isobars are drawn.
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PART III. COLLAPSE OF FLUID COLUMNS 301

of the column. At the instant of release, however, the column boundary must become the
isobar p = 0, and the pressure on the horizontal supporting plane will be reduced non-
uniformly on account of the instantaneous accelerations set up in the column. Figure 7
shows the calculated distribution of the isobars p/pga = constant, at 7 = 0 for the initially
hemispherical column iz vacuo, with N = 4 (cf. figure 6). Even with such a small value of N
the calculated values of p/pga on the column boundary are very small, except near 0 = 1.
At the centre of the base of the column, the pressure, which is pga just before the column is
released, falls instantaneously to 0-477pga. In the corresponding plane symmetric case
(cf. figures 4, 5), the initial distribution of isobars is very similar, and the values of p/pga
on the column boundary are smaller with N = 4, and smaller still, of course, with N = 5.
The calculated pressure at the centre of the base of the column, at the instant of release, is
0-622pga with N = 4, and 0-628pga with N = 5.

5. APPROXIMATE SOLUTION FOR SQUAT COLUMNS

At any stage of the motion when the maximum surviving height of the column is small
compared with its base diameter, vertical accelerations in the motion will be correspondingly
small compared with horizontal accelerations. In such circumstances, an interesting type
of approximate solution may be derived by making the sole assumption, following Lamb’s
Hydrodynamics, art. 187, that vertical acceleration may be neglected, or more precisely,
that the pressure at any point is sensibly equal to the static pressure due to its depth below
the free surface.

First, we shall deal with the case where the column rests on a rigid horizontal plane, but
is not partially supported by a second liquid. Finally, we deal with the case where the second
liquid is also present.

Second fluid absent

Let co-ordinates (y,z) be chosen, with y measured vertically upwards from the base-
plane, and z measured horizontally from the plane (or radially from the axis) of symmetry;
and let the height of the free surface at any point be #(z, ¢).

Then the condition of zero pressure at the free surface gives, on the above assumption,

b= pg(n—y),
ap Iy
so that 2, = P87 s

which is independent of y. The horizontal (or radial) acceleration of the fluid is thus the
same for all particles which are equidistant from the plane (or axis) of symmetry. It follows
that all particles which are so equidistant at any time will remain so; in other words, the
horizontal (or radial) velocity u is a function of z and ¢ only.
Then, of the two equations of conservation of momentum, namely,
du | du du_ 10p

% T Ty T " haz

dv  dv dv_ 10p
A
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the second is satisfied identically by virtue of the assumption of negligible vertical accelera-

tion, and the first reduces to
du tu du (?17 (40)
ot Yoz T T8z

The boundary condition on velocity at the free surface is

7 dy dp | dy
I PRl T =

and this combines with the equation of conservation of mass,
dv  du  ku
dy Ttz =0

. d dn | ku du
to give (;Z-I— 3Z+ - 1, (41)

In the above equations, £ is a constant, with the value zero for plane symmetry, and unity
for axial symmetry.
From (40) and (41), it follows that, for any 4,

l:at+(u+/117) ‘?]uu[w ( +§);Z r;+”“”’ 0, (42)
and the two operators in this equation may be made identical by choosing A to satisfy
Ay = g[,
A=+ (gn)*
In this case, equation (42) reduces to
(5 +(en) o | Tusk2(en) i 24800 (43)

The problem has thus been reduced to one of the hyperbolic type in the two independent
variables (z,¢). The characteristic curves are given by

dz

‘= _ 1
Z = vk (an) (44)
and along these curves hold respectively the relations
z H
uiZ(g”)%j:kf E%% = constant. (45)

The remaining boundary conditions for a column starting from rest are
z=0: u=0 forally
t=0: u=0 forallz
n = an?[1—fy(z/a)] for |z|<a and fy(1) =1,
n=0 for|z|>a.

(46)

Here 2a is the initial base measurement of the column, 72%a its initial height, and f,(z/a) is
a function defining the shape of its initial cross-section.
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Non-dimensional variables
With the transformation Z = z/a,
— nlan?
H = g/an?, (47)
T'=nt (g [a)},
U = ufn(ag)},
. dZ
the characteristic curves become T U+ H, (48)
along which hold respectively the relations
z UH' dZ
3 e
U4t-2H ikj UL Z constant, (49)
and the boundary conditions reduce to
Z=0: U=0 forall 7,
T=0: U=0 forall Z (50)

H=1—f(Z) for |Z|<1andfy(1) =1,
H=0 for |Z|>1.

z

Ficure 8. Notation used for the motion of a squat column of liquid 1 at the bottom
of a sheet of liquid 2, of average depth £.

Fluid column partially supported by a second fluid

It is also possible, with the assumption of negligible vertical acceleration, to deal with the
problem of a column immersed in another fluid. Consider a fluid column immersed in an
outer fluid of finite mean depth %, and let suffix 1 refer to the fluid inside the column, and
suffix 2 to the surrounding fluid.

The equation of conservation of momentum in fluid 1 is then

7 du 10
St = =z 28— m) o180 —y)]- (51)

Writing ¢ = p,/p,— 1, this becomes

Tt TG T TT14edz 1tedz (52)

VoL. 244. A. ‘ 39
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Similarly, the equation of conservation of momentum in fluid 2 is
du du i}
2"’ Uy (?zz —§ ’3122 (53)

The equations of conservation of mass are

du,

kn u
—Hh(?z_l_ T¥

o,
0z

‘9771

ot T,

~0 (54)

d d 7
and 2 (2= m1) Ftty (my—11) + (h-my—1,) 52+ (uyf2) (ht-15—7,) = O (55)

Now / only occurs in equation (55), and if 2—o0 this equation reduces to

Lo(aw) o o M

z 0z dz

according as £ =1 or 0, i.e. zu, or u, respectively is a function of ¢ only. But the condition
for symmetrical motion is
z=0: uy,=0forally

and hence, in this case, u, = 0 for all z and ¢ It follows from (53) then, that dy,/dz = 0,
and (52) and (54) thus reduce to

T T Ti4eaz (56)
‘777 1 3771 k
o Ty, Ty =0 (57)
Non-dimensional variables
The transformation Z = z/a,
H = plan?,
7/ (58)

T = ntf{a(1+¢) Jeg}t,
U = ufn{acg/(1+e)}},

then again reduces the problem and the boundary conditions to the forms given in (48),
(49) and (50).

The approximate solution outlined above is thus one which can be readily computed by
the numerical method of characteristics. The transformation (47) shows that the dis-
persive motion of all columns iz vacuo which have the same initial shape except for a scale
factor in height, depend, under the assumption of negligible vertical acceleration, on the
same characteristic solution. The more general transformation (58) shows further that the
same result is also true when the column is immersed in another fluid which extends upwards
and outwards to infinity, differences in the relative densities of the two fluids being equi-
valent to a reduction in the value of gravity by a factor ¢/(1+¢).

Numerical solutions, obtained by this method, are given in the following section.
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6. CALCULATIONS FOR SQUAT COLUMNS

Several calculations have been made by the numerical method of characteristics, neg-
lecting vertical accelerations in the motion ab initio. For the plane symmetric case ofa column
initially at rest with a rectangular cross-section (cf. equations (50))

MY e 12 &
g D
LU/ L
= /; -
, /Z//%//,A B |
F | <
0 : ti 2K \/><\4;/7 8 9

4 5
T = nt/{a(1+¢)/eg}t

Ficure 9. Characteristic diagram for the plane symmetric column, initially
rectangular at rest, and of height 4»? times its width.

Figure 9 shows the characteristic diagram in this case for one-half of the symmetric motion,
and figure 10 shows the corresponding motion of the column boundary. The motion con-
sists of two simple waves, centred respectively on 4 and its reflexion 4’ in Z = 0, which
interact when they both reach the centre of the column at B. The ultimate characteristic 4D
of the simple wave about 4 is Z = 2T, and this gives the physical result that the base of the
column travels outwards, ab initio, with the constant specific velocity U = 2. It can easily
be shown that the non-linear characteristic through any point

Z=1—a,
T=uqa
on AB is the cubic (2T+1—2)% = 27a2T. (60)

39-2
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Thus the characteristic BFGH ... C, which terminates the simple wave centred on 4, is
the cubic @T+1—2Z)* = 271T. (61)

Within the simple wave DABC
U=2(Z—-1+T)/3T, (62)
H=[(@2T-Z+1)3T]
and thus, at any given time, the distribution of H across the simple wave DABC'is parabolic.
It is of interest to note that the characteristic geometry corresponds to that of the steady
supersonic flow of a compressible fluid through an orifice into a vacuum.

1'OBT=1-(;Y 5
/ Z;=O-5
0-8
o |mis
%OG N
|
]
T=2-0,
04 G
T=3-0 H
02—T=4'0 \r \\\ .
0 1 2 3 4 5 6 7 8

Z=2zla

Ficure 10. Collapse of a rectangular column, initially at rest and
of height 1n? times its width.

Figures 11 and 12 show the corresponding solution for a plane symmetric column initially
at rest with a semi-elliptic cross-section, i.e.

Jo(Z2) =1—-(1-2%) (63)

In this case, the base of the column accelerates from zero velocity up to the terminal value
U=2. .

Figure 13 shows the comparison between this solution for the column boundary at

T = 0-8 in the particular case (n = 1, ¢—>00) of an initially semicircular column iz vacuo,
and the corresponding solution derived by the method of § 4 above.
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30 D
y
2-0 ///’
3.
N
]
N 7
A
1-0 77 Z .4 7 7 7
\
0 1-0 _ 2-0 30

T = ntf{a(1+¢)/eg}t

Fieure 11. Characteristic diagram for a plane symmetric column initially at rest with a semi-elliptic
cross-section. The initial height at the centre of the column (the minor semi-axis of the ellipse)
is $n? times the initial width at the base (the major axis of the ellipse). ’

1-0

I\
\
I\
\
Oﬂ%\
AN DO
o s No N\ N

0 1-0 2:0 3-0 4-0
Z=2zla

Ficure 12. Collapse of the semi-elliptic column described in figure 11.

H = y/an?

7
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Figures 14 and 15 show the results obtained for an axially symmetric column initially
at rest with a rectangular cross-section. In the case of axial symmetry, the integral term in
the relations (49) which hold along the characteristics has an integrand whose numerator
and denominator both tend to zero as the axis Z = 0 is approached. This difficulty is sur-
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Z=1zla
Ficure 13. A comparison of the shape of a column iz vacuo, initially hemi-cylindrical at rest, at
specific time 7 = 0-8. The curve through the circles is the average of the solutions with
N =4 and N = 5 shown in figures 4 and 5; and the curve through the squares is the solution
obtained by the method of characteristics (i.e. neglecting vertical acceleration).
3
2 4 // / g
i < L
J ?
Il
N
>
~ . o
m A
— /
U [
O
W /
P

OF

0o 1 2 3 4
T = ntf{a(1 +¢€)/eg}t

Ficure 14. Characteristic diagram for an axially symmetric column in a second fluid,
initially rectangular in cross-section of height §»* times the width.
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mounted in the numerical calculations by making use, in the neighbourhood of the axis of
symmetry, of the relation + 3

im0 L dH; (64)

UL HY - Hi dT

where H, denotes the value of H on the axis of symmetry. A more complicated process of
iteration is thus necessitated in the small arcs of computation adjacent to the central axis.
This process involves extrapolation of the gradient of H* along this axis.
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Ficure 15. The shape at various times of the column described in figure 14.
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< . 7.. APPENDIX

S ~ By L. FOX anp E. T. GOODWIN

% E National Physical Laboratory

E 8 An alternative method of solving the general problem was suggested and tried by the
[y Mathematics Division, National Physical Laboratory.

This method attempts to calculate values of the velocity potential, and the position of
the moving fluid boundary, by a direct numerical attack on the governing differential
equations and boundary conditions.

In the non-dimensional form produced by equations (12) it is required to solve, in the
plane case, the differential equation

PHILOSOPHICAL
TRANSACTIONS
OF

20  9*d
W+W =0, (A1)

(91
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where @ is also a function of 7. On the boundary, with no outer fluid, there is the pressure
condition I\ 2

1 o AT (2 oo, "

and a second condition that the normal velocity of the fluid is equal to that of the boundary.

The suggested procedure is to use finite steps in time, calculating at successive instants
the velocity potential at points, located at nodes of a square mesh, lying within the fluid.
If at any time 7 the position of the boundary and the values of ®(7) on it are known, ®(7) at
internal points can be calculated by use of equation (A1) and relaxation methods. The
boundary conditions are then used to give an estimate of the boundary position at time
7+ 07, and the new values ®(7+-07) on this boundary. In theory the process can be extended
in time as far as desired.

It is not difficult to produce finite-difference equations, for ® and boundary position,
which are satisfactory for small and well-behaved variations of these quantities. If the
suffixes 1, 0 and —1 refer to conditions at times 707, 7 and 7—dr respectively, and if X, ¥
are the co-ordinates, along particular horizontal and vertical mesh lines, of the boundary
points, the following equations can be deduced from the boundary conditions:

e =) () o), s
S s
N T F T
@, (O e (Y v o

where 6 is the slope of the boundary where it is intersected by the particular mesh line,
and (0®/dx), and (®/dy), are the derivatives of @, at that point in the ¥ and y directions
respectively.

In practice, however, the use of small steps in time and space is not very satisfactory, the
accumulation of errors in a large number of time steps becoming veryserious. The difficulties
are particularly acute near the base, where the fluid spreads out rapidly. The determination
of it; boundary is then rather difficult, since, for any given mesh length dy in the vertical
direction, a considerable horizontal range of the fluid may occupy a depth less than Jy.
If large time intervals are taken, on the other hand, the finite-difference approximations
are not very sound.

At the time of this investigation, moreover, the assumption was made that the angle of
contact between the fluid boundary and the base was 90°. The results are not therefore
regarded as being any more satisfactory than those obtained by the method of §2. One
case was attempted, that of a plane column initially rectangular, of height one unit and
breadth two units, in non-dimensional terms. Small time intervals were used for the first
few steps, larger intervals later, and results were obtained up to a non-dimensional time of
1-5 units. A certain amount of smoothing was necessary, and it was estimated that the results
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would become almost meaningless, due to the accumulation of errors already mentioned,
for subsequent times.

Figure 16 shows the calculated fluid boundaries at several instants of time in this range.
In spite of the generally unsatisfactory natuge of this work, there is some measure of agree-
ment with experimental results.

7=0%
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Ficure 16. Collapse of a plane symmetric column ¢z vacuo, initially rectangular at rest, at various

specific times 7. The solution obtained by the Mathematics Division of the National Physical
Laboratory, using relaxation methods. ‘

REFERENCES

Karman, Th. von 1940 Mathematical methods in engineering. New York: McGraw Hill.

Shurcliff, W. A. 1947 Bombs at Bikini: the official report of Operation Crossroads. New York: William
H. Wise and Co., Inc. ‘ ' )

Stokes, G. G. 1880 Collected papers, 5, 62. Cambridge University Press.

United States Atomic Energy Commission 1950 The effects of atomic weapons. New York: McGraw
Hill.

Whittaker, E. T. & Watson, G. N. 1927 (or subseqent reprinting). Modern analysis, 4th ed.,
Chapter XV, §15-231, pp. 314-15. Cambridge University Press.

Vor. 244. A: 40


http://rsta.royalsocietypublishing.org/

